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A Non-Maxwellian Steady Distribution for
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We consider a nonlinear Fokker-Planck equation for a one-dimensional
granular medium. This is a kinetic approximation of a system of nearly elastic
particles in a thermal bath. We prove that homogeneous solutions tend
asymptotically in time toward a unique non-Maxwellian stationary distribution.
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1. INTRODUCTION

A simple model of granular media, widely studied in the last years, is a
one-dimensional system of N particles colliding inelastically. In such a
model the particles move freely between two consecutive collisions and in
the collision instant the impulse is conserved while the kinetic energy is
dissipated. The collision rule is:

v'=v, +e(v—0y), vy=v—¢(v—vy) (1.1)

where ¢ is the inelasticity parameter and v', v| and v, v, are the outgoing
and ingoing velocities respectively.

This model has many interesting features. First of all it can deliver
collapses. For N=3 it is possible to prove that, if ¢ is larger than some
critical value, there is a positive measure set of initial conditions for which
the particles perform infinitely many collisions and converge to the same
point in a finite time (see refs. 9 and 15). In refs. 4 and 15 the collapse for
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a large number of particles has been investigated and a conjecture on the
minimum value of ¢ (given N) to have a collapse was formulated. In
general it is possible to prove that, if eN <log2, there is no collapse.
Moreover if ¢éN > x, there exists an initial particle configuration leading to
a collapse (see ref. 2).

Numerical simulations showing clustering of particles in dimension
two are described in ref. 12.

A challenging problem is to give an hydrodynamic description of
granular media (see, e.g., ref. 7, 13), and this model, thanks to its sim-
plicity, is a natural candidate to check the validity of this kind of descrip-
tion.(1%16.17) T particular in ref. 17 it has been shown numerically, that an
hydrodynamic description works if the equation are closed at the third
moment of the velocity and not, as usual, at the second moment (the tem-
perature). Moreover it has been outlined by Y. Du er al. (see ref 10)
anomalous thermodynamic and hydrodynamic behavior due to the
tendency of the system to clusterize. In particular, putting the system in a
slab and pumping energy from a wall at a constant temperature, they
observe no energy equipartition: most of the particles are far from the wall
and basically at rest.

Therefore, in order to compensate the strong tendency of the system
to dissipate energy, it is natural to investigate the response of the system
in a thermal reservoir. In this problem we face this problem in a kinetic
approximation which we are going to explain.

Consider the limit N — o0, ¢ = 0, Ne— A, see refs. 3, 10, and 16. In
such a way it is possible to derive (formally) the following kinetic equation
for the phase space distribution function f:

(0, +00,) [ = —A0,(Ff) (12)

where

F(x, 0, t) =j¢(5—u) fx, 5, 1) d5 (1.3)

and ¢(y) =y |y|, y€R. For this equation it is possible to prove existence
of smooth solutions for a short time and of global solutions for small
data.®
We mention that it is still unclear whether collapses, namely the
formation of a d-component, can occur in a finite time, is still open.
Incidentally we mention that other kinetic picture (Boltzmann like
descriptions) are possible in dimension one,!® ') and larger.('")
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In this paper we consider an inelastic particle system in the kinetic
picture (1.2), in a thermal bath at a constant temperature, described, as
usual, by a Fokker—Planck term:

(0,+00,) f=—A0(Ff)+Boof) +03f (14)

We shall actually consider the much simpler homogeneous case: [ is
only a function of the velocity. We stress that this analysis is not academic.
Indeed in view of a possible hydrodynamic limit for the system (1.4), it is
interesting to investigate carefully what happens locaily, when, in the fast
thermalization scale, the homogeneous regime is dominant.

We shall prove that any solution of the homogeneous version of
Eq. (1.4) converges, as f — o0, to a steady state which is not Maxwellian.
Such stationary solution is described implicitly by an equation of mean-
field type, (Eqgs. (2.5)(2.6) below) and, for large v, behaves as exp — C |v|*.
In other words the inelastic interaction makes the distribution more picked
around than the usual Maxwellian distribution.

We do not know whether this solution is stable for the general non
homogeneous case. Also we do not know whether the thermal bath is suf-
ficient to prevent the solution to have a collapse in a finite time. However
we want to mention that a three-particles system in a thermal bath do
deliver collapses for a positive set of initial conditions, (see ref. 2). As a
consequence we conjecture that the Fokker—Planck term does not help too
much to prevent singularities for the solutions to Eq. (1.4).

Let us finally remark that related asymptotics of Fokker—Planck type
equations have been studied in refs. 1, 5, and 6.

2. CONVERGENCE TO EQUILIBRIUM

Consider the following initial value problem

0./ +0[(AF—pv) f1=00}f
S(v,0) = fo(v)

(2.1)

where

F(v.1)= [ §(5—0) f(5, 1) d5'= = (¢ * [, 0)(0) (22)

Here f = f(v,t) denotes the one-particle phase space distribution for a
large system of inelastic particles in a homogeneous mean-field approxima-
tion: each particle can interact with any other, no matter where they are
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localized. Moreover the system is in contact with a thermal reservoir at
temperature 7=0¢/f modeled by the Fokker-Planck term in Eq. (2.1).
Indeed, for A=0 in Eq. (2.1), the only invariant measure of the system is
the Maxwellian:

M(v) = Ce=Fvi2e (2.3)

where C is a normalization factor.
From now on we shall assume that the total momentum is vanishing
at time zero (and hence at later times):

fvfo(u) du=jvf(u, 1) do=0 (2.4)

In this paper we are interested in the limit 1 — oo for the solutions to
Eq. (2.1). A trivial calculation shows that the (formal) equilibria of
Eq. (2.1), satisfy the following equation:

f(v) - i e~ ((F20) V2 +(4f30) § o —5|® /(%) d5) (2.5)

VA

where

Z=fdve—((/f/2a)uz+u/3a>j|v—ﬁ|’f'<v) ds) (2.6)

We shall prove that there exists a solution to Eq. (2.5) which minimize
a suitable free-energy functional (defined in Eq. (2.11) later on). Moreover
the solutions of the initial value problem (2.1) converge to such steady
solution. A remarkable fact of this analysis is that the above solution is not
Maxwellian.

Before dealing with this asymptotics we first spend a few words about
the existence of the solutions. We first notice that the Cauchy problem (2.1)
can be characterized in terms of a nonlinear diffusion process (in the
Mc Kean sense, see ref. 14). In fact, consider the following stochastic
process:

dV(t, v)= —(Ad = f()(V (¢, v))— BV(¢, v)) dt + /20 db; v(0,v)=v ae.
2.7

where f(¢) is given by:

ff(u, 1) u(v) do=E <j fol0y u(Vio, 1)) dv> (2.8)
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and [ denotes the expectation, # a continuous test function and V is the
solution of Eq. (2.7). The fixed point problem arising from (2.7) and (2.8)
can be solved with some modifications as in ref. 3 where it was investigated
the case o= =0. In particular we can construct a classical solution to
Eq. (2.1) provided that to f, e C3(R). More precisely it can be proved that,
given (1 +v*) fy e LY(R), there exists a unique solution of Eq. (2.1) (with
this regularity) satisfying the nonlinear integral equation

L) = (Mv(l) * fO)a(t) +4 L‘ epS( —ava(l——s) * (F(s) f(s))a(s)’l)a(t) ds

where M, (v) is the Maxwellian distribution of temperature v > 0,
(8)e (W) =a"V2g(a™ "), veR, a>0

a(t)=e~ 2 and w(1) = a/B(e¥* —1).

Related existence results can be seen in refs, 8 and 18.

There is an important difference with the deterministic case we want
to stress. For g = =0 the solution becomes of compact support at any
positive time and this describe the strong tendency of the system to concen-
trate around v=0. Here (for ¢ #0), the diffusion prevents this fact and
Sf(v, t) >0 for ¢ >0. However the moments of the distribution can be con-
trolled easily.

For a positive even integer p > 2, we have:

%f 0?0, 1) dv < —ﬁj v?f(v, 1) dv + ap(p — 1) j 0P~ 2f(v, 1) dv  (2.9)

Inequality (2.9) is consequence of the fact that the nonlinear term (see
ref. 3), gives rise to a negative contribution.

By (2.9) we use the mass conservation to control the kinetic energy
uniformly in time. By a recursive argument we also have the bound:

sup jvl’f(v, Hdv< C (2.10)

teR

provided that { v?/o(v) dv < + c0.
Let us now pass to analyze the asymptotic behavior of the solutions to
Eq. (2.1). The basic tool in our analysis is the following free-energy functional:

1) = | o) og f(w) do+ 2= [ 10— 6% fiv) 105 dodo +- 2 [ 270y av

20
(2.11)
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The formal variation of this functional (on the probability distribution
densities) is:

5;7=“logf(v)+%flv—ﬁPf(ﬁ)dﬁ-%%vz Soyds  (212)

As consequence 6x( f) =0, implies f solution to Eq. (2.5).

Remark. Consider a particle discretization of our system given by
the Langevin equation:

dvi=%2¢(vi—vj) dt — P, dt + /20 db;, i=1,2,... N (R.1)
i

where b, are N independent brownian motion.
Notice that the drift term in the right-hand side of (R.1) is the gradient
of the function:

By 2, 4 3
=Y o2+ — > lv,—yl (R.2)
2 6N &Y

i
Therefore the process solution of {R.1) has a unique invariant measure
given by

const.e— (1RO B + (6N, ;10— v1°] (R.3)

In the mean field limit N — co the one-particle distribution function
relative to distribution (R.3) converges to the solution of the self-consistent
equation (2.5). This argument suggests the introduction of the functional
(2.11). Eq. (2.5) can be obtained as a mean-field limit of the equilibrium
distribution for a system of N inelastic particles, with ¢N = 1. Moreover,
Eqgs. (2.7)-(2.8) are a nonlinear Langevin equation with potential given by
(B/2)0* + (4/3) j dp |v—v|* f(#). This formally implies that the equilibrium
is given by Eq. (2.5), and that #, as in (2.11), is a Lyapunov function.

Theorem 2.1. Consider the functional # defined by (2.11) on the
set:

9={feLl(R)|f>0,jf=1,juf(u)=o} (2.13)

Then # has a unique minimum, f, in 2, and fe C* and satisfies (2.5).
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Proof. We first show that » is bounded from below. Denoting by
x(A4) the characteristic function of the set 4, we have, for any fe 2:

— [ flog fulf <1)dv=~] flog fule M < £ < 1)) d

~ [ f log fu(f <eP")

<L [0l sy do— [ /T 108 oo vy r <1y o
g
4
<—2’%+£ jvzf(u) do+ M 7" (2.14)

where

M= sup -—\/710gr

O<r<l

Therefore n = —(f/20 + 4Moa/f).
Consider now a minimizing sequence {f,} 2 ,:

7= inf n(f)= lim n(f,)
fe? n— 4o

Note that the three terms, entropy, interaction term and Kkinetic
energy, computed on the sequence f,, must be uniformly bounded, and
then the third moment of £, is also uniformly bounded.

Extract now a converging subsequence (still denoted by f,) in the
sense of the weak convergence of the measure. Let f be the limit. Notice
that fis a probability density by the entropy and energy control. Moreover
the entropy control implies that the convergence holds weakly in L. By
the lower semi-continuity of the entropy:

ff'logfslim infjf,, log f,
Moreover

[1o—a1* fw) 1) dasnnlinff lo—31° f,(v) f.(5) dv do
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and
Jvzf_(v) dv= lim fvzf,,(v) dv

which implies that 7= 5(f).

The uniqueness of the minimum follows by the strict convexity of #.
Moreover f is even by uniqueness, is decreasing for v > 0 by rearrangement
arguments, and f(v) > 0, because of the presence of the entropy term in 7.
Therefore, from (2.12), f results to be a solution of Eq. (2.5). Finally, being
fdolv—o]° f(7)eC* if feL,, by a bootstrap argument in (2.5) we con-
clude that feC*®. |

A remarkable property of the free energy functional is that it decreases
along the solutions. Indeed if f= f(v,t) is a classical solution with
fo€? N CR), and #( f,) < + oo, then 5( (1)) <n( f,) as follows by a direct
computation and an integration by parts:

f= —f[logf(v)+3iaflv—ﬁl3f(ﬁ)dﬁ+%v2] OJL(AF—pv) f—c0,f]dv

11
=— j 7|(1F—,Bv)f—aavf|2dv<0 (2.15)

We are now in position to characterize the asymptotic behavior of the
solution.

Theorem 2.2. For any fe€ 2 n C¥R), with { v*f, < + 00, and with
#(fo) < + 00 we have:

Jlim 1£() = fllz, =0 (2.16)
Proof. The proof is organized in two steps.
Step 1:
lim (/(1)) =7 =n(/)
where f is the solution to (2.5) minimizing #.
Step 2:

lim | f(6) = fll, =0
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To prove step 1 we define #=1im, _, ., #( f(¢)). Therefore:

A == ii(f(s) ds

and there exists a diverging sequence {¢,}_, such that #(f(z,)) - 0. By
the entropy and energy control we can find a probability density g such
that the limit k —» co of f(z,) is g in the sense of,the weak convergence of
the measures (extracting subsequences if necessary).

Putting f, = f(t;) and F,= —¢ * f;, we have:

f |(AF— Bv) fre—0 0, fi| a’v=J % {(AF, — Bv) fr —a 0, fi| dv
k

<(—ai(fi)"? -0 (217)

As a consequence of (2.17), and (2.10) for the fourth moment of f,, for any
@ e Cg we have

[ o) AF ~ o) fudv+o [ 8,0f, dv

- I P)AF,—pv) gdv+o J‘ d,0g dv=0

where F,= —¢ * g.
In particular g is a solution, in the sense of distribution, of the
equation:

(AFg—pv)g+0d,g=0 (2.18)

However, by a bootstrap argument, we realize that g e C*® so that g solves
(2.18) classically. Finally, since g is positive, we conclude that it is also a
solution to Eq. (2.5). Therefore g is a stationary point of #, and by the
strict convexity of # we conclude that g = f.

We now show that f; is a sequence uniformly bounded in W'"!
Indeed:

1 |
100 fillz, < [ 1AFe=Bv) =0 B fil do-+— [ [(AF—Po) fildo (219

The first term is uniformly bounded by o~'2|s(f,)|'? which is
vanishing, while the second one is uniformly bounded by virtue of (2.10).
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As a consequence, being the kinetic energy uniformly bounded, f, is
strongly converging in L; and also a.. converging (passing to sub-
sequences, if necessary).

We now want to show the convergence of the entropies. By the W' !
bound, we have:

sup [l fell., <C (2.20)
k
so that, by the dominated convergence theorem:

AT WAt ) (221)

Il <R

Moreover we obtain the bound:

f felog fi| <O <l) (2.22)
(o] > R R
In fact, by (2.20) and the energy bound:
C
[ g fathi>b<c|  fisg (223)
lvi >R o] >R

Moreover, proceeding as in (2.14):

[ feogfrthe<D<Z [ plswdsm]  emman @24
Jol >R g Ylv|>R

lo| > R

Therefore

[ £10g oo [ Frog 7 (2.25)

The other terms of # are continuous in f'if the fourth moment is bounded,
so that:

Jlim 5(f(2)) = lim 1(fi) =7 =n(f) (2.26)

This achieves the proof of step 1.
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The second step follows by the inequality:
(f=1)
S+f

which is an easy consequence of the analysis of the second derivative of #.
By the Schwartz inequality we have

o
n(f)—n(f)>5j (2.27)

_ (f__f)2 1/2 _ 1/2
v-m< ([ ) (Juen) (228)
and thus:
0= 7L, <2 (1) =)= 0 (229)
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